forked from maksimbaz/cnn_vti_inversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
381 lines (289 loc) · 14.5 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#!/usr/bin/env python
# coding: utf-8
# This script is used for the neural network construction and training.
# In[ ]:
import numpy as np
import pickle
import os
import random
import time
import matplotlib
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from contextlib import redirect_stdout
# In[ ]:
import tensorflow as tf
import keras
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Flatten, Dropout, Conv2D, MaxPooling2D
from keras.utils import multi_gpu_model, plot_model
from keras.callbacks import LambdaCallback
from keras import regularizers, optimizers
# In[ ]:
train_output_folder = './train_output/'
# In[ ]:
# figure fonts
font = {'family' : 'serif',
'weight' : 'bold',
'size' : 16}
matplotlib.rc('font', **font)
# In[ ]:
# load lists
with open('list_dataset_filepaths', 'rb') as fp:
list_dataset_filepaths = pickle.load(fp) # list of the paths to samples form the dataset
with open('list_parameters', 'rb') as fp:
list_parameters= pickle.load(fp) # list of parameters (neural network output)
# load coefficient shot gather (input) normalization
with open('max_seism_value', 'rb') as fp:
max_seism_value = pickle.load(fp) # this parameter is used for the input dataset normalization
# In[ ]:
datset_size = len(list_dataset_filepaths)
assert len(list_dataset_filepaths) == len(list_parameters)
print('datset size:', datset_size)
# In[ ]:
# reading block
# function for the dataset reading from file
filename_r_time = './dataset10/seism_time.bin' # each sample (shot gather) has the same time size, which is saved in this file
time_full = np.fromfile (filename_r_time)
mean_timestep = len (time_full)
num_of_rec_in_group = 13
epoch_number = 0 # the value changes during training process
def read_x_data(list_dataset_filepaths):
# np.random.seed()
global epoch_number, time_full, mean_timestep
seismogram = np.zeros((len(list_dataset_filepaths), num_of_rec_in_group, mean_timestep))
# amp_map = np.zeros((num_of_rec_in_group, mean_timestep)) # amplitude map (moving average) fot noise adding
# N = 220 # width of the window usded for the amplitude map calculation
gain = np.exp(-4e5*time_full[:]**2)*1e2/(epoch_number+1)+1 #epoch_number=500 in the end of training
gain /= max_seism_value
for ifile, file_path in enumerate(list_dataset_filepaths):
filename_r = file_path
seism_read = np.fromfile(filename_r)
for irec in range(num_of_rec_in_group):
seismogram[ifile, irec, :] = seism_read[irec*mean_timestep:(irec+1)*mean_timestep]*gain
# amp_map[irec, :] = np.convolve(abs(seismogram[ifile, irec, :]), np.ones((N))/N, mode='same')
# noise = np.random.rand(num_of_rec_in_group, mean_timestep)/5-0.1
# seismogram[ifile, :, :] = seismogram[ifile, :, :] + noise*amp_map[:,:]
if (seismogram.shape[1]+8)*seismogram.shape[2]*8 != os.path.getsize(filename_r):
print('error! smth wrong with reading')
return seismogram.reshape(seismogram.shape[0], seismogram.shape[1],seismogram.shape[2], 1) #channels last
# In[ ]:
# funtion used for the Keras fit_generator
def dataset_loader(list_dataset_filepaths, list_parameters, batch_size):
L=len(list_dataset_filepaths)
#this line is just to make the generator infinite, keras needs that
while True:
batch_start = 0
batch_end = batch_size
while batch_start < L:
limit = min(batch_end, L)
x_dataset = read_x_data(list_dataset_filepaths[batch_start:limit])
y_dataset = np.array(list_parameters[batch_start:limit])
batch_start += batch_size
batch_end += batch_size
yield (x_dataset, y_dataset) #a tuple with two numpy arrays with batch_size samples
# In[ ]:
# output array (desired parameters) has to be normalized
def normalize_list_parameters(list_parameters):
if datset_size != len(list_parameters):
print('error! smth wrong with dataset size')
list_parameters_numpy = np.asarray(list_parameters, dtype=np.float32)
rho_max = np.max(list_parameters_numpy[:,0])
vp_max = np.max(list_parameters_numpy[:,1])
vs_max = np.max(list_parameters_numpy[:,2])
eps_max = np.max(list_parameters_numpy[:,3])
gamma_max = np.max(list_parameters_numpy[:,4])
delta_max = np.max(list_parameters_numpy[:,5])
list_parameters_numpy[:,0] /= rho_max
list_parameters_numpy[:,1] /= vp_max
list_parameters_numpy[:,2] /= vs_max
list_parameters_numpy[:,3] /= eps_max
list_parameters_numpy[:,4] /= gamma_max
list_parameters_numpy[:,5] /= delta_max
rho_mean = np.mean(list_parameters_numpy[:,0])
vp_mean = np.mean(list_parameters_numpy[:,1])
vs_mean = np.mean(list_parameters_numpy[:,2])
eps_mean = np.mean(list_parameters_numpy[:,3])
gamma_mean = np.mean(list_parameters_numpy[:,4])
delta_mean = np.mean(list_parameters_numpy[:,5])
list_parameters_numpy[:,0] -= rho_mean
list_parameters_numpy[:,1] -= vp_mean
list_parameters_numpy[:,2] -= vs_mean
list_parameters_numpy[:,3] -= eps_mean
list_parameters_numpy[:,4] -= gamma_mean
list_parameters_numpy[:,5] -= delta_mean
list_parameters_normalized = []
for i in range(datset_size):
list_parameters_normalized.append( [ list_parameters_numpy[i,0], list_parameters_numpy[i,1], list_parameters_numpy[i,2], list_parameters_numpy[i,3], list_parameters_numpy[i,4], list_parameters_numpy[i,5] ] )
return list_parameters_normalized, rho_max, vp_max, vs_max, eps_max, gamma_max, delta_max, rho_mean, vp_mean, vs_mean, eps_mean, gamma_mean, delta_mean
# In[ ]:
# save normalization coefficients to the file
# we will need when using trained neural network
list_parameters, rho_max, vp_max, vs_max, eps_max, gamma_max, delta_max, rho_mean, vp_mean, vs_mean, eps_mean, gamma_mean, delta_mean = normalize_list_parameters(list_parameters)
normalization_param_list = []
normalization_param_list.append('rho_max='+'{}'.format(rho_max)+'\n')
normalization_param_list.append('vp_max='+'{}'.format(vp_max)+'\n')
normalization_param_list.append('vs_max='+'{}'.format(vs_max)+'\n')
normalization_param_list.append('eps_max='+'{}'.format(eps_max)+'\n')
normalization_param_list.append('gamma_max='+'{}'.format(gamma_max)+'\n')
normalization_param_list.append('delta_max='+'{}'.format(delta_max)+'\n')
normalization_param_list.append('rho_mean='+'{}'.format(rho_mean)+'\n')
normalization_param_list.append('vp_mean='+'{}'.format(vp_mean)+'\n')
normalization_param_list.append('vs_mean='+'{}'.format(vs_mean)+'\n')
normalization_param_list.append('eps_mean='+'{}'.format(eps_mean)+'\n')
normalization_param_list.append('gamma_mean='+'{}'.format(gamma_mean)+'\n')
normalization_param_list.append('delta_mean='+'{}'.format(delta_mean)+'\n')
with open(train_output_folder + "normalization_param_list.txt", "w") as f_write:
for lineWrite in normalization_param_list:
f_write.write(lineWrite)
# In[ ]:
# split data to train and validation subsets
np.random.seed()
list_filepaths_train, list_filepaths_valid, true_parameters_train, true_parameters_valid = train_test_split(list_dataset_filepaths, list_parameters, test_size=0.1)
print('train dataset size:', len(list_filepaths_train))
print('validation dataset size:', len(list_filepaths_valid))
# In[ ]:
# check shapes of the x and y dataset
x_dataset_example = read_x_data(list_filepaths_train[9:10])
y_dataset_example = np.array(true_parameters_train[9:10])
print ('x_dataset shape (batch(=1), num_of_rec_in_group, timesteps, channels(=1)):', x_dataset_example.shape)
print ('y_dataset shape (batch(=1), dim[vp ,vs]):', y_dataset_example.shape)
# In[ ]:
# with tf.device('/cpu:0'):
# model = Sequential()
# model.add(Conv2D(filters=50, input_shape=(13,5500,1), kernel_size=(6,6), strides=(1,1), padding='same', activation='relu'))
# model.add(Conv2D(filters=50, kernel_size=(5,5), strides=(1,1), padding='same', activation='relu'))
# model.add(Conv2D(filters=50, kernel_size=(5,5), strides=(1,1), padding='same', activation='relu'))
# model.add(MaxPooling2D(pool_size=(1, 2)))
# model.add(Conv2D(filters=75, kernel_size=(3,3), strides=(1,1), padding='valid', activation='relu'))
# model.add(Conv2D(filters=75, kernel_size=(3,3), strides=(1,2), padding='valid', activation='relu'))
# model.add(Conv2D(filters=75, kernel_size=(3,3), strides=(1,2), padding='valid', activation='relu'))
# model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Conv2D(filters=100, kernel_size=(2,2), strides=(1,2), padding='same', activation='relu'))
# model.add(Conv2D(filters=100, kernel_size=(2,2), strides=(1,2), padding='valid', activation='relu'))
# model.add(Conv2D(filters=100, kernel_size=(2,2), strides=(1,2), padding='valid', activation='relu'))
# model.add(Flatten())
# model.add( Dense(2500, activation='relu') )
# model.add(Dropout(0.3))
# model.add( Dense(750, activation='relu') )
# model.add( Dense(200, activation='relu') )
# model.add( Dense(6) )
# model.add(Activation('linear'))
# print('model initialized')
# with open(train_output_folder + 'model_summary.txt', 'w') as file_write_sum:
# with redirect_stdout(file_write_sum):
# model.summary()
# model.summary()
# In[ ]:
# or load pretrained model
model = load_model(train_output_folder + 'model.h5')
# In[ ]:
# compile model
batch_size=16;
nb_epoch=500;
print('nb_epoch:', nb_epoch)
print('steps_per_epoch:', np.ceil(datset_size/batch_size))
print('validation_steps:', np.ceil(len(list_filepaths_valid)/batch_size))
parallel_model = multi_gpu_model(model, gpus=4)
parallel_model.compile(loss='mean_squared_error', optimizer=optimizers.Adadelta())
# In[ ]:
# functions which gets epoch number during training process
def get_epoch(epoch):
global epoch_number
epoch_number = epoch
GetEpoch_callback = LambdaCallback(on_epoch_begin=lambda epoch,logs: get_epoch(epoch))
# In[ ]:
# training
start_time = time.time()
history=parallel_model.fit_generator(dataset_loader(list_filepaths_train, true_parameters_train, batch_size),
steps_per_epoch=np.ceil(datset_size/batch_size), epochs=nb_epoch, verbose=1,
validation_data=dataset_loader(list_filepaths_valid, true_parameters_valid, batch_size), validation_steps=np.ceil(len(list_filepaths_valid)/batch_size), callbacks=[GetEpoch_callback])
model.save(train_output_folder + 'model.h5')
done_time = time.time()
elapsed_time = done_time - start_time
print('elapsed time:', elapsed_time)
# In[ ]:
# plot training and validation loss function values
print(history.history.keys())
# summarize history for loss
fig=plt.figure(figsize=(12, 10), dpi= 80, facecolor='w', edgecolor='k')
plt.plot(history.history['loss'][3:], linewidth=2)
plt.plot(history.history['val_loss'][3:],'--', linewidth=2)
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
print('train_loss for the last training epoch:', history.history['loss'][-1])
print('valid_loss for the last training epoch:', history.history['val_loss'][-1])
# In[ ]:
# check predictions for the validation dataset
predictions_valid = parallel_model.predict_generator(dataset_loader(list_filepaths_valid, true_parameters_valid, batch_size), steps=np.ceil(len(list_filepaths_valid)/batch_size), verbose=1)
# In[ ]:
# put here normalization coefficients, if you uploaded complete model
# rho_max=3839.0
# vp_max=6489.0
# vs_max=3999.0
# eps_max=0.25956490635871887
# gamma_max=0.24065768718719482
# delta_max=0.2931036949157715
# rho_mean=0.6626886129379272
# vp_mean=0.6760891079902649
# vs_mean=0.7519354820251465
# eps_mean=0.30609753727912903
# gamma_mean=0.19618447124958038
# delta_mean=0.2660829424858093
# In[ ]:
# convert predictions to real values
for i in range(len(predictions_valid)):
#unMEAN
predictions_valid[i][0] += rho_mean
predictions_valid[i][1] += vp_mean
predictions_valid[i][2] += vs_mean
predictions_valid[i][3] += eps_mean
predictions_valid[i][4] += gamma_mean
predictions_valid[i][5] += delta_mean
true_parameters_valid[i][0] += rho_mean
true_parameters_valid[i][1] += vp_mean
true_parameters_valid[i][2] += vs_mean
true_parameters_valid[i][3] += eps_mean
true_parameters_valid[i][4] += gamma_mean
true_parameters_valid[i][5] += delta_mean
#unMAX
predictions_valid[i][0] *= rho_max
predictions_valid[i][1] *= vp_max
predictions_valid[i][2] *= vs_max
predictions_valid[i][3] *= eps_max
predictions_valid[i][4] *= gamma_max
predictions_valid[i][5] *= delta_max
true_parameters_valid[i][0] *= rho_max
true_parameters_valid[i][1] *= vp_max
true_parameters_valid[i][2] *= vs_max
true_parameters_valid[i][3] *= eps_max
true_parameters_valid[i][4] *= gamma_max
true_parameters_valid[i][5] *= delta_max
# In[ ]:
# plot predictions vs true values
true_parameters_valid = np.array(true_parameters_valid)
predictions_valid = np.array(predictions_valid)
#one_png
fig_res, ax_res = plt.subplots(6,1)
fig_res.set_size_inches(10, 50)
ax_res[0].set(xlabel='Reference CNN output', ylabel= 'Calculated CNN output', title=r'$\rho, kg/m^3$')
ax_res[0].scatter(true_parameters_valid[:,0], predictions_valid[:,0], facecolors='none', edgecolors='b')
ax_res[0].locator_params(nbins=6)
ax_res[1].set(xlabel='Reference CNN output', ylabel= 'Calculated CNN output', title=r'$V_{p_0}, m/s$')
ax_res[1].scatter(true_parameters_valid[:,1], predictions_valid[:,1], facecolors='none', edgecolors='b')
ax_res[1].locator_params(nbins=6)
ax_res[2].set(xlabel='Reference CNN output', ylabel= 'Calculated CNN output', title=r'$V_{s_0}, m/s$')
ax_res[2].scatter(true_parameters_valid[:,2], predictions_valid[:,2], facecolors='none', edgecolors='b')
ax_res[2].locator_params(nbins=6)
ax_res[3].set(xlabel='Reference CNN output', ylabel= 'Calculated CNN output', title=r'$\varepsilon$')
ax_res[3].scatter(true_parameters_valid[:,3], predictions_valid[:,3], facecolors='none', edgecolors='b')
ax_res[3].locator_params(nbins=6)
ax_res[4].set(xlabel='Reference CNN output', ylabel= 'Calculated CNN output', title=r'$\gamma$')
ax_res[4].scatter(true_parameters_valid[:,4], predictions_valid[:,4], facecolors='none', edgecolors='b')
ax_res[4].locator_params(nbins=6)
ax_res[5].set(xlabel='Reference CNN output', ylabel= 'Calculated CNN output', title=r'$\delta$')
ax_res[5].scatter(true_parameters_valid[:,5], predictions_valid[:,5], facecolors='none', edgecolors='b')
ax_res[5].locator_params(nbins=6)
plt.savefig(train_output_folder + 'predictions_all.png')