forked from maksimbaz/cnn_vti_inversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathform_lists.py
88 lines (74 loc) · 3.66 KB
/
form_lists.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import pickle
import os
dataset_directory = './dataset10/'
# create x(train) and y(teacher) dataset list
def create_XY_lists(dataset_ditectory, log_file_name, num_of_samples_to_read):
list_dataset_filepaths = [] # x-list: path to each file of dataset
list_parameters = [] # y-list: rho vp vs eps gamma delta
file_path_y = os.path.join(dataset_ditectory, log_file_name)
with open(file_path_y, 'r') as file_read_y:
for i in range(num_of_samples_to_read+1):
data_y = file_read_y.readline()
if i == 0:
if int(data_y) != num_of_samples_to_read:
print('achtung! smth wrong with dataset size and read samples')
else:
data_y = data_y.split('\t')
list_parameters.append( [ float(data_y[1]), float(data_y[2]), float(data_y[3]), float(data_y[4]), float(data_y[5]), float(data_y[6]) ] )
filename_r = dataset_ditectory + 'seism' + str(data_y[0]) + '.bin'
list_dataset_filepaths.append(filename_r)
return list_dataset_filepaths, list_parameters
list_dataset_filepaths, list_parameters = create_XY_lists(dataset_directory, 'dataset_log_file_TD.txt', 10)
assert len(list_dataset_filepaths) == len(list_parameters)
num_of_rec = 13
filename_r_time = dataset_directory + 'seism_time.bin'
time_full = np.fromfile (filename_r_time)
num_of_timesteps = len(time_full)
def read_seismogram_monomode(filepath):
seism_read = np.fromfile(filepath)
seismogram = np.zeros((num_of_rec, num_of_timesteps))
for irec in range(num_of_rec):
seismogram[irec, :] = seism_read[irec*num_of_timesteps:(irec+1)*num_of_timesteps]
if seismogram.shape[0]*seismogram.shape[1]*8 != os.path.getsize(filepath):
print('achtung! smth wrong with reading')
return seismogram
def clear_lists_from_nan_samples(list_dataset_filepaths, list_parameters):
list_dataset_filepaths_new = []
list_parameters_new = []
count_nan_seismograms = 0
max_seism_value = 0
for i, item in enumerate(list_dataset_filepaths):
print(i, 'of', len(list_dataset_filepaths))
seismogram = read_seismogram_monomode(item)
if (np.any(np.isnan(seismogram[:,:])) == True) or np.any(abs(seismogram[:,:])>1200):
count_nan_seismograms+=1
print('nan bitch is detected!', count_nan_seismograms)
print(item)
print('-------')
else:
max_seism_value_temp = np.max(abs(seismogram[:,:]))
if max_seism_value_temp > max_seism_value:
max_seism_value = max_seism_value_temp
list_dataset_filepaths_new.append(item)
list_parameters_new.append(list_parameters[i])
print('|||||| num_of_nan_samples:', count_nan_seismograms, '||||||')
return list_dataset_filepaths_new, list_parameters_new, max_seism_value
print('please, wait! clearing NaN seismograms...')
list_dataset_filepaths, list_parameters, max_seism_value = clear_lists_from_nan_samples(list_dataset_filepaths, list_parameters)
print('clearing NaN seismograms done!')
# exclude seismograms, where vs<1500 (they are only in egd1200)
list_parameters_arr = np.array(list_parameters)
numbers = np.where(list_parameters_arr[:,2] < 1500)
print(numbers)
numbers = np.array(numbers)
numbers = numbers[0]
for inum in numbers:
list_parameters[inum] = list_parameters[inum-1]
list_dataset_filepaths[inum] = list_dataset_filepaths[inum-1]
with open('max_seism_value', 'wb') as fp:
pickle.dump(max_seism_value, fp)
with open('list_dataset_filepaths', 'wb') as fp:
pickle.dump(list_dataset_filepaths, fp)
with open('list_parameters', 'wb') as fp:
pickle.dump(list_parameters, fp)