-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathyue.py
135 lines (121 loc) · 5.77 KB
/
yue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
from re import split
from tool.config import Config,LineConfig
from tool.file import FileIO
from tool.dataSplit import *
from multiprocessing import Process,Manager
from time import strftime,localtime,time
from json import loads
import mkl
class Yue(object):
def __init__(self,config):
self.trainingData = [] # training data
self.testData = [] # testData
self.measure = []
self.config = config
setup = LineConfig(config['record.setup'])
columns = {}
labels = setup['-columns'].split(',')
delim = ''
if setup.contains('-delim'):
delim=setup['-delim']
for col in labels:
label = col.split(':')
columns[label[0]] = int(label[1])
if self.config.contains('evaluation.setup'):
self.evaluation = LineConfig(config['evaluation.setup'])
binarized = False
bottom = 0
if self.evaluation.contains('-b'):
binarized = True
bottom = float(self.evaluation['-b'])
if self.evaluation.contains('-testSet'):
#specify testSet
self.trainingData = FileIO.loadDataSet(config['record'],columns=columns,binarized=binarized,threshold=bottom,delim=delim)
self.testData = FileIO.loadDataSet(self.evaluation['-testSet'],binarized=binarized,columns=columns,threshold=bottom,delim=delim)
elif self.evaluation.contains('-ap'):
#auto partition
self.trainingData = FileIO.loadDataSet(config['record'],columns=columns,binarized=binarized,threshold=bottom,delim=delim)
self.trainingData,self.testData = DataSplit.\
dataSplit(self.trainingData,test_ratio=float(self.evaluation['-ap']))
elif self.evaluation.contains('-byTime'):
self.trainingData = FileIO.loadDataSet(config['record'], columns=columns, binarized=binarized,threshold=bottom, delim=delim)
self.testData = []
elif self.evaluation.contains('-cv'):
#cross validation
self.trainingData = FileIO.loadDataSet(config['record'],columns=columns,binarized=binarized,threshold=bottom,delim=delim)
#self.trainingData,self.testData = DataSplit.crossValidation(self.trainingData,int(self.evaluation['-cv']))
else:
print ('Evaluation is not well configured!')
exit(-1)
print ('preprocessing...')
def execute(self):
#import the algorithm module
try:
importStr = 'from recommender.baseline.' + self.config['recommender'] + ' import ' + self.config['recommender']
exec (importStr)
except ImportError:
importStr = 'from recommender.cf.' + self.config['recommender'] + ' import ' + self.config['recommender']
try:
exec (importStr)
except ImportError:
importStr = 'from recommender.advanced.' + self.config['recommender'] + ' import ' + self.config['recommender']
exec (importStr)
if self.evaluation.contains('-cv'):
k = int(self.evaluation['-cv'])
if k <= 1 or k > 10:
k = 3
mkl.set_num_threads(max(1,mkl.get_max_threads()/k))
#create the manager used to communication in multiprocess
manager = Manager()
m = manager.dict()
i = 1
tasks = []
binarized = False
if self.evaluation.contains('-b'):
binarized = True
for train,test in DataSplit.crossValidation(self.trainingData,k):
fold = '['+str(i)+']'
# if self.config.contains('social'):
# recommender = self.config['recommender'] + "(self.config,train,test,self.relation,fold)"
# else:
recommender = self.config['recommender']+ "(self.config,train,test,fold)"
#create the process
p = Process(target=run,args=(m,eval(recommender),i))
tasks.append(p)
i+=1
#start the processes
for p in tasks:
p.start()
if not self.evaluation.contains('-p'):
p.join()
#wait until all processes are completed
if self.evaluation.contains('-p'):
for p in tasks:
p.join()
#compute the mean error of k-fold cross validation
self.measure = [dict(m)[i] for i in range(1,k+1)]
res = []
for i in range(len(self.measure[0])):
if self.measure[0][i][:3]=='Top':
res.append(self.measure[0][i])
continue
measure = self.measure[0][i].split(':')[0]
total = 0
for j in range(k):
total += float(self.measure[j][i].split(':')[1])
res.append(measure+':'+str(total/k)+'\n')
#output result
currentTime = strftime("%Y-%m-%d %H-%M-%S", localtime(time()))
outDir = LineConfig(self.config['output.setup'])['-dir']
fileName = self.config['recommender'] +'@'+currentTime+'-'+str(k)+'-fold-cv' + '.txt'
FileIO.writeFile(outDir,fileName,res)
print ('The result of %d-fold cross validation:\n%s' %(k,''.join(res)))
else:
# if self.config.contains('social'):
# recommender = self.config['recommender']+'(self.config,self.trainingData,self.testData,self.relation)'
# else:
recommender = self.config['recommender'] + '(self.config,self.trainingData,self.testData)'
eval(recommender).execute()
def run(measure,algor,order):
measure[order] = algor.execute()